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DYNAMICAL CALCULATIONS OF NUCLEAR FISSION
AND HEAVY-ION REACTIONS

J. Rayford Nix and Arnold J. Sierk
Theoretical Division, Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

ABSTRACT

With the goal of determining the magnitude and mechanism
of nuclear dissipaticon from comparisons of predictions
with experimental data, we describe recent calculations
in a unified macroscopic-microscopic approach to large-
amplitude collective nuclear motion such as occurs in
fission and heavy-ion reactions. We describe the time
dependence of the distribution function in phase space
of collective coordinates and momenta by a generalized
Fokker-Planck equation. The nuclear potential energy of
deformation is calculated as the sum of repulsive Cou-
Tomb and centrifugal energies and an attractive Yukawa~
plus-exponential potential, the inertia tensor {s calcu-
lated for a superposition of rigid-body rotation and
incompressible, nearly irrotational flow by use of the
Werner-Wheeler method, and the dissipation tensor that
describes the conversion of collective energy into
single-particle excitation energy 1s calculated for two
protot) pe mechanisms that represent opposite extremes of
large and small dissipation. We solve the generalized
Hamilton equations of motion for the first moments of
the distribution function to obtain the mean transla-
tional fisston-fragment kinetic energy and mass of a
third fragment that sometimes forms between the two end
fragments, as well as dynamical thresholds capture
cross sections, and ternary events in heavy-ion reac-
tions.



1.  INTRODUCTION

Nuclear physicists have been struggling for years to determine
the magnitude and mechanism of nuclear dissipation--to answer two
elementary questions: Is a nucleus overdamped like a drop of honey, or
underdamped 1ike a drop of water? Does a nucleus dissipate its energy
of collective motion primarily through interactions of nucleons with
the mean field generated by the remaining nucleons, or do two-particle
collisions play a substantial role? Despite numerous experimental
clues provided by fission and heavy-ion reactions, the answers to such
questions posed by this challenging many-body problem have pro-.ed
elusive. This is because of the many complementary aspects displayed
by the atomic nucleus. With its relatively small number of degrees of
freedom, the nucleus is both microscopic and macroscopic on the one
hand and both quantal and classical on the other, which gives it a
rich dynamical behaviour ranging from elastic vibrations of solids to
long-mean-free-path dissipative fluid flow with statistical fluctu-
ations. On this occasion of the Golden Jubilee of the Indian National
Science Academy, we would like to tell you about some of our recent
calculations at Los Alamos directed toward answering these questions.

Our approach is not to explain the experimental data in terms of
some model with adjustable parameters--since often several models with
widely different physical bases are capable of doing this equally
well--but instead to find and calculate physical observables that
depend sensitively upon the magnitude and mechanism of nuclear dis-
sipation. The difficulty arises because many of the gross experi-
mental features of fission and heavy-ion reactions are determined
primarily by a competition between the attractive nuclear force and
the repulsive Coulomb and centrifugal forces, and any theoretical
approach that includes correctly these relatively trivial forces re-
produces the data with fair accuracy. Also, the final effacts on
observable quantities caused by dissipation are often very similar to
the final effects caused by collective degrees of freedom.

In our studies here, we consider two prototype mechanisms that
represent opposite extremes of large and smal) dissipation. For these



two mechanisms we use a macroscopic-microscopic method to calculate
observable quantities in fission and heavy-fon reactions and confront
these predictions with experimental data in an attempt to determine
the magnitude and mechanism of nuclear dissipation.

2.  MACROSCOPIC-MICROSCOPIC METHOD

We focus from the outset on those few collective coordinates that
are most relevant to the phenomena under consideration. In particu-
lar, for a system of A nucleons, we separate the 3A degrees of freedonm
representing their center-of-mass motion into N collective degrees of
Treedom that are treated explicitly and 3A - N internal degrees of
freedom that are treated implicitly.

2.1 Collective Coordinates

In our earlier dynamica! studies we have usually described the
nuclear shape in terms of smoothly joined portions of three quadratic
surfaces of revolution, with three symmetric and two independent asym-
metric shape coordinates.]"sJ Although suitable for many purposes,
this three-quadratic-surface parametrization breaks down in the later
stages of many heavy-ion fusion calculatfons, is unable to describe
division into more than two fragments, and leads to very complicated
expressions for the forces involved.

Because of these disadvantages, we have sw1tchod6J to a mors
suitable parametrization in which an ax{ally symmetric nuclear ghape
1s described in cylindrical coordinates by means of the Ligendre-pon-
nomial oxpansion7]

pf(z) = n?, ﬁb q, Pn[(z-i)/zol . (1)
n’

In this expression, z is the coordinate along the symmetry axis, Py is
the value on the surface of the coordinate perpendicular to the sym-
metry 1511. 24 is one-half the distance between the two ends of the
shape, 2 {s the value of z at the rmidpoint between the two ends, Ro is
the radius of the spherical nucleus, Pn {s a Legendre polynomial of
degree n, and q, for n¥ 0 and 1 ara N - 1 shape coordinates. Since



the nucleus is assumed to be incompressible, the gquantity 9 is not
independent but is instead determined by volume conservation. Also,

% is determined by fixing the center of mass. In addition, we in-
clude an angular coordinate 6 = On+1 to describe the rotation of the
nuclea: symmetry axis in the reaction plane, which leads to a total of
N coltective coordinates q = CPYSRRRT. VIR that are considered. Through-
out this paper we use N = 11, corresponding to five independent sym-
metric and five inrdependent asymmetric shape coordinates and one angu-
lar coordinate.

2.2 Potential Energy

We consider excitation energies that are sufficiently high that
single-particle effects may be neglected and calculate the potential
energy of deformation V(q) as the sum of repulsive Coulomb and cen-
trifugal energies and an attractive Yukawa-plus-exponential poten-
t1a1,8] with constants determined in a recent nuclear mass fornula.gJ
This generalized surface energy takes into account the reduction in
energy arising from the nonzero range of the nuclear force in such a
way that saturation is ensured when two semi-infinite slabs are

brought into contact.

2.3 Kinetic Energy
The collective kinetic energy is given by

IEFLORAEIES ¥ (O R FCRE T (2)

where the collective momenta p are related to the collective veloci-
ties q by

Py = Miy(Q) qy . (3)

In these equations and the remainder of this paper we use the conven-
tion that repeated indices are to be summed over from 2 to N + 1. At
the high excitation energies and large deformations considered here,
where pairing correlations have disappeared and near crossings of
single-particle levels have become less frequent, the rotational mo-
ment of inertfa is close to the rigid-body va1u01°] and the vibrational
inartia 1s close to the fncompressible, irrotational valuo.ll] We



therefore calculate the inertia tensor M(q), which is a function of
the shape of the system, for a superposition of rigid-body rotation
and incompressible, nearly frrotational flow. For this purpose we use
the Werner-wheeler method, which determines the flow in terms of cir-
cular layers of quid.l-SJ

2.4 Dissipation Mechanisms

The coupling between the collective and internal degrees of free-
dom gives rise to a dissipative force whose mean component in the i-th
direction may be written as

F1 = - n”(Q) &J s - n“(Q) ["(Q)-IJJK Pk . (4)

For the calculation of the shape-dependent dissipation tensor n(q)
that describes the conversion of collective energy into single-par-
ticle excitation energy, we consider two prototype mechanisms that
represent opposite extremes of large and small dissipation. The first
mechanism is one-body dissipat1on.4-6’12-15]
1isfons of nucleons with the moving nuclear surface and when the neck
is smaller than a critical size also from the transfer of nucleons
through it, with a magnitude that is completely specified by the
model. The second mechanism is two-body v1scosity,2'4'6] which is
responsible for dissipation in ordinary fluids. Because in nuclei the
nucleaon mean free path is long compared to the nuclear radius, the
conventional result for this mechanism is not expected to apply.
Nevertheless, with a coefficient of two-body viscosity that is adjus-
ted to reproduce experimental results, it represents a tractable and
useful phenomenologica! approach for describing small dissipation.
Compared to most of our previous calculations with one-body dis-
sipation."s'lzl our present calculations incorporate three improve-
munts. First, to describe the transition from the wall formula that
applies to mononuclear shapes to the wall-and-window formula that
spplies to dinuclear shapes we now use the smooth 1ntorpo1ationG]

which arises from col-

n = s1n?Ga) (5)

e, n
wall + cos (5") n

wall-and-window °'

whereo



a=(r )2

/R (6)

neck’ "min

is the square of the ratio of the neck radius Tneck to the transverse
seni-axis Rnin of the end fragment with the smaller value. Second, in
determining the drift velocities of the end fragments relative to
which velocities in the wall-and-window formula are measured, we now
require the conservation of linear and angular momentum rather than
using the velocities of the centers of mass.sl However, the results
calculated with both prescriptions for the drift velocity are nearly
identical. Third, for asymmetric shapes we now also take inte account
the dissipation associated with a time rate of change of the mass

asymmetry degree of freedom in the completed wall-and-window form-
u1a.14’15]

2.5 Generalized Fokker-Planck Equation

In addition to the mean dissipative force, the coupling between
the collective and internal degrees o¢ freedom gives rise to a residu-
al fluctuating force, which we treat under the Markovian assumption
that it does not depend upon the system's previous history. At high
excitation energies, where classical statistical mechanics {is valid,
we are led to the generalized Fokker-Planck equation

-1
. a(M ™)
3t -1 af _lav_ .1 K af
LR TH [_aqi*i'_ﬁ;i'pj pk] 5,
e (MY 2puf) ¢,y R )
13 Jk 3p, k 13 apiapJ

for the dependence upon time t of the distribution function f(q,p,t)
in phase space of collective coordinates and momenta. The last term
on the right-hand side of this equation describes the spreading of the
distribution function in phase space, with a rate that is proportional
to the dissipation strength and the nuclear temperature t, which is
measured here in energy units.

2.6 Generalized Hamilton Equations
Although a useful approximate solution of a two-dimensional



Fokker-Planck equation has been obtained recentIy,ls] it 1s stiN
difficult in practice to solve the generalized Fokker-Planck equation
except for special cases. Therefore, in some of our studies we use
equations for the time rate of change of the first moments of the
distribution function, with the neglect of higher moments. These are
the generalized Hamilton equations

61 = ("- )11 Pj (8)
and
-1
a(M *)
< __8 _1 Jk - -1
P; = aqi 2 8q1 Pj Py nij (M )jk Py » (9)

which we solve numerically for each of the N generalized coordinates
and momenta.

3. FISSION

As our first application, we calculate for the fission of nuclei
throughout the periodic table their mean transiational fission-frag-
ment kinetic energies and compare with experimental values. Although
similar to earlier stud1es.2’4] our present calculations are performed,
as discussed above, with a more flexibls shape parametrization, with a
more realistic set of constants, and with an improved treatment of
one-body dissipation. Also, our initial conditions at the fission
saddle point now incorporate the effect of dissipatio. on the fissfon
directfonl7] and are calculated for excited nucle! with nuclear temper-
ature t = 2 MeV by determining the mean velocity of all nuclef that
pass per unit time through the saddle point with positive velecity.
Because this procedure 1s no longer valid when the fissfon barrier is
less than the nuclear temperature, fn such cases we use the mean
velocity of the nucleus whose barrier {s 2 MeV high. The atomic
number Z {s related to the mass number A according to Green's appruxi-
mation to the valley of beta stability.lg] Our calculations for two-
body viscosity are performed with viscosity coefficient

18]
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g =0.02 TP =1.25x 10 MeV s/fm3 s (10)

which as we see later is the value required to optimally reproduce
experimental mean fission-fragment kinetic energies.

3.1 Dynamical Uescent

In our fission calculations we specialize to reflection-symmetric
shapes and zero angular momentum, so that only five coordinates are
considered explicitly. The mean dynamical trajectories in deformation
space for light nuclei correspond to short descents from dumbbell-like
saddle-point shapes to compact scission shapes, whereas those for
heavy nuclei correspond to long descents from cylinder-like saddle-
point shapes to elongated scission shapes. Compared to the trajec-
tories for nonviscous nuclei, those for one-body dissipation lead to
more elongated scission shapes for light nuclei and to more compact
scission shapes for heavy nuclei. In contrast, the trajectories for
two-body viscosity always lead to more elongated scission shapes.

3.2 Ternary Division

An exciting new aspect of these dynamical calculations is the
formation of a third fragment between the two end fragments for suf-
ficiently heavy nuclei with either no dissipation or small two-body
viscosity. As shown in Fig. 1, the mass of this third fragment in-

creases with increasing ZZ/A:"/3

above a critical value that is slight-
ly lower for two-body viscosity than for no dissipation. Since no
third fragment is formed with one-body dissipation, accurate experi-
mental information concerning such true ternary-fission processes
should help decide the nuclear-dissipation issue. Further theoretical
aspacts of this problem are currently being studied at Los Alamos by

carjan. 203

3.3 Fission-Fragment Kinetic Energies

In calculating the mean fissfon-fragment translational kinetic
energy at infinity, we treat the post-scission dynamical motion in
terms of two spheroids, with initial conditions determined by keeping
continuous the values of two moments and their time derivatives. When
a small third fragment is formed in a realistic situation off the
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Figure 1

Effect of dissipation on the formation of a third fragment between the
two end fragments.

symmetry axis and/or with some transverse velocity, it moves away and
contributes less to the kiretic energy of the two larger end fragments
than it would in our idealized calculation, where it remains station-
ary at its origin. In the presence of a third fragment, we obtain a
lower 1imit to the fission-fragment kinetic energy by calculating the
post-scission separation of the end fragments in the absence of the
middle fragment. Also, we estimate an upper 1imit in terms of the
kinetic energy at scission of the two end fragments plus the Coulomb
fnteraction energy of three spherical nuclei posftioned at their re-
spective centers of charge.

As the nucleus descends dynamically from its fission saddle
point, the repulsive Coulomb force can overcome the attractive nuclear
force and rupture the neck prior to its reaching a zero radius, as is
required in our calculations. Although such a neck rupture at & non-
Zero radius would increase the calculated kinetic energy slight\y,zl]
we neglect this effect here because of the difficulty of properly
incorporating the nuclear compressibility energy, which plays a cru-
cial role in the neck-rupture process.



We compare in Figs. 2 and 3 our mean kinetic energies calculated
in this way with experimental values for the fission of nuclei at high
excitation energy,2'22'23] where single-particle effects have de-
creased in importance. As shown by the short-dashed curves in both
figures, the results calculated with no dissipation are for heavy
nuclei substantially higher than the experimental values. Dissipation
of either type lowers the calculated kinetic energy. However, as
shown by the long-dashed curve in Fig. 2, one-body dissipation with a
magnitude that is specified by the theory predicts for heavy nuclei
valuzs that 1ie below the experimental data. This underpredic.ion
arises because the highly dissipative descent from the saddle point
damps out much of the pre-scission kinetic energy, and our improved
parametrization leads to moderately elongated scission shapes with
Tower Coulomb repulsion. We regard this discrepancy as experimentally
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Figure 2
Reduction of mean fission-fragment kinetic energies by one-body dis-
sipation, compared to experimental values.
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Reduction of mean fission-fragment kinetic energies by two-body vis-
cosity, compared to experimental values.

demonstrating that one-body dissipation as presently formulated is not
the complete dissipation mechanism in large-amplitude collective nu-
clear motion.

In contrast, as shown by the solid curves in Fig. 3, when the
two-body viscosity coefficient is adjusted to the value p = 0.02 TP,
the experimental data for heavy nuclei lie between the calculated
lower and upper limits and are adequately reproduced throughout the
rest of the pariodic table. For two-body viscosity, the dynamical
trajectories lead to elongated scission shapes with less Coulomb re-
pulsion, but this is supplemented by some pre-scission kinetic energy.
These results calculated with several improvements demonstrate that
mean fission-fragment kinetic energies are capable after all of dis-
tinguishing between dissipation mechanisms.

11



4, HEAVY-ION REACTIONS

Even better prospects for determing the dissipation mechanism
reside with heavy-ion reactions, where we are able to choose the total
mass of the combined system, the mass asymmetry of the entrance chan-
nel, and the bombarding energy with foresight. This permits us to
select for study those dynamically interestin~ cases that involve
large distances in deformation space.

4.1 Dynamical Thresholds for Fusion

A necessary ¢ dition for compound-nucleus formation is that the
dynamical traijectory of the fusing system pass inside the fission
saddle point in a multidimensional deformation space. For heavy nu-
clear systems and/or large impact parameters, the fission saddle point
1ies inside the contact point, and the center-of-mass bombarding ener-
gy must exceed the maximum in the one-dimensional zero-angular-momen-
tum interaction barrier by an amount AE in order to form a compound
nucleus.

This additional energy AE has been calculated for symmetric nu-
clear systems both by solving the generalized Hamilton equations nu-
merically with the three-quadratic-surface shape parametrization and
realistic forcess's’sl and approximately with the two-sphere-plus-
conical-neck shape parametrization and schematic forces.14’24’25]

Such values calculated for symmetric nuclear systems have been com-
pared with experimental values derived from asymmetric nuclear systems
under various assumptions concerning the sca, .g of asymmetric systems
into symmetric ones.5’6’14’23'28] However, our recent calculations
involving asymmetric systems indicate that none of th -. scaling as-
sumptions are sufficiently accurate for detailed comparisons.

We therefore compare here our values of the additional energy AE
calculated for five specific nuclear systems for which neutron-evapo-
ration-residue cross sections have been recently neasurodze'zgl and
analyzed to yield experimental thresholds.ze] As indicated in Table
1, as we progress through these systems the additional energy calcu-
lated with two-body viscosfty increases from less than 1 MeV, repre-
senting only the energy that is dissipatec during the approach stage.'

12



Table 1
Comparison of calculated and experimental values of the additional
energy AE required to form a compound nucleus, measured relative to
the maximum in the calculated ore-dimensional zero-angular-momentum
interactfon barrier. The calculated values of additional energy are
for two-body viscosity with coefficient p = 0.02 TP.

Calculated Calculated Experimental
one-dimensional additional additional
Reaction barrier (MeV) energy (MeV) energy (MeV) Note
907r + 907y 5 180jg 189.0 0.9 -7+2 a
86Ky + 1235h » 209Fp  209.0 0.9 0%
1245y + 967y 4 220Th  224.7 1.2 1613 b
1245 + 942p 4 218Th 2255 6.5 1323 c
12450 + 927p » 216Th 2263 8.2 1

“or this reaction irvolving nuclei lighter than those requiring an
additional energy, the negative experimental value of AE suggests the
importance of zero-point vibrations on the low-energy fusion cross
section (Ref. 30).

bFor this reaction involving a target for which the calculated value
of Nilsson's spheroidal deformation coordinate ¢ = 0.20 (Refs. 9 and
31), the large experimental value of AE compared to the calculated
value suggests the importance of static ground-state deformations on
the additional energy.

For this reaction involving a target for which the calculated value
of Nilsson's spheroidal deformation coordinate ¢ = -0.12 (Refs. 9 and
31), the moderately large experimental value of AE compared to the
calculated value suggests the importance of static ground-state de-
formations on the additional energy.

to several MeV, representing in addition the energy required to dynam-
ically push the system inside fts fission saddle point. The experi-
mental values show a similar trend, but three large deviations from
the calculated values suggest the important role played by zero-point
vibrations and static ground-state deformations, as discussed in tne
footnotes to Table 1. Our analogous calculations with one-body

13



dissipation are not yet completed; like the rest of you at this Con-
ference, we are eagerly awaiting their outcome.

4.2 Capture Cross Section )

For the reaction 208pp + 58fe that has been studied experimental-
1y by Bock et al.,zs] we calculate the capture cross section corre-
sponding to the transfer of 40 or more nucleons from the heavier 208pp
nucleus to the lighter 58Fe nucleus. Our calculated results are com-
pared in Fig. 4 with experimental values resulting from a revised
analysis in which the experimental capture cross section is defined in
terms of reaction products with fully relaxed total kinetic energy and
masses lying between the deep-inelastic peaks.zs] The cross section
calculated with two-body viscosity is somewhat larger than the experi-
mental points at all energies except near the threshold.

We have not yet finished our analogous calculations with one-body
dissipation when the additional term in the completed wall-and-window
formula {s included because it requires the specification of a mass
asymmetry, which {s difficult for shapes with long necks. When this

1000 v ——— e ;/://;//
E 800 &Spb + “Fe -
S ¢
ié 600

¢
g 400
S
Ei 200 — Two-body viscosity,
=002 TP

| T YOV I G | " | P B | A

%920 240 260 280 300 320 340 360 380
Bombarding Energy Ecn (MeV)

Figure 4
Capture cross section calculated with two-body viscosity, compared
to revised experimental valuss (Ref. 23).
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additional term is omitted, the capture cross section calculated with
one-body dissipation is even larger at intermediate anc high energies
than that calculated with two-body viscosity, but the additional term
is expected to reduce it. Similar calculations with a restricted
shape parametrization where the present difficulties did not arise
have been performed by Biocki,sz] who adjusted his interpolation pro-
cedure to reproduce the original unrevised experimental data for a
comparable reaction.zs]

4.3 Ternary Events

We consider next tihe reaction 129Xe + 128Sp at a laboratory bom-
barding energy per nucleon of 12.5 MeV studied experimentally by Gl¥s-
sel et al..33] for which ternary events were obser..d approximately
10X of the time when the energy loss was large. Gl¥ssel et al. de-
duced that the time between successive scission events {is approxi-
mately 1 x 10'21 s, during which the two primary fragments move only a
few nuclear radi{ apart and perform only a fraction of a rotation.

The ratio of mean fragment masses for the second scission event was
determined to be approximately 1.5.

Figures 5 and 6 show sequences of shapes calculated for this
reaction for angular momentum L = 250 and 350 h, respectively. In
these two figures our results with one-body dissipation are calculated
for computational ease without. the additional term in the wall-and-
window formula, which has 1ittle effect since the system 1s nearly
symmetric. With this dissipation mechanism, the process is essentiai-
ly binary, with only extremely small third fragments forming between
the two end fragments. In contrast, two-body viscosity with coef-
ficfent p = 0.02 TP leads to true ternary events, with middle-fragment
masses of 51.4 and 69.1 amu for L = 250 and 350 h, respectively. The
mass ratio of the forward-going fragment to the middie fragment is
1.93 for L = 250 h and 1.32 for L = 350 h,

Although fn our calculations with two-body viscosity, which refer
to mean e2vents, the two necks reach zero radius at essentially the
same time, fluctuations could introduce some difference. Also, the
scissfon-to-scission time of 1 x 10.21 s deduced by Gll¥ssel et al. was

15



2xe + 28n
/129 = 125 MeV, L =260 N
One-body Two-body

Time (102s)

Figure 5
Effect of dissipation on ternary heavy-ion events for angular mo-
mentum L = 250 h. The 1%®Xe projectile is incident from the right.
For clarity, the dashed scissior shapes are shown displaced from their
proper horizontal positions.

based on certain assumptions concerning nuclear shapes that are very
different from those calculated here. Although the probability for
ternary events in our calculations with two-body viscosity 1s much
larger than the approximately 10X observed by Gl¥ssel et al., the
experimental arrangement could have missed events in which the middle
fragment remained essentially at rest in the center-of-mass system and
detected instead only those with some forward velocity resulting once
again from fluctuations. Although several issues remain to be clari-
fied, it is possible that the ternary events seen by Gl¥ssel et al.
have a dynamical origin of the type calculated hare for small two-body
viscosity. If so, this could provide a convincing discrimination
between the two extremes of dissipation that we are considering.

16
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Figure 6

Effect of dissipation on ternary heavy-ion everts for angular mo-
mertum L = 350 A. The 129Ke projectile is incident from the right.

S.  CONCLUSION

We are entering a new era in fission and heavy-ion reactions. Up
to now theoratical approaches with vastly different pictures of the
underlying nuclear dynamics have reproduced many of the gross experi-
mental features of fission and heavy-fon reactions because they in-
clude correstly the dominant nuclear, Coulomb, and centrifugal forces.
Howevar, calculations are now being designed specifically to test the
dissipation mechanism. When compared with mean fission-fragment ki-
netic energies, these calculations demonstrate that one-body dissipa-
tion {s not the complete dissipation mechanism. The next step 1s to
compute dynamical thresholds for fusfon and capture cross sections
with one-body dissipation and compare with experimental results.

Ternary heavy-ion events offer the most exciting prospect for
finally determining the magnitude and mechanism of nuclear dissipa-

17
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tion. If experimentally observed ternary events turn out to have a
dynamical ovigin of the type calculated here with two-body viscosity,
this would suggest small dissipation in nuclei. In this eventuality
the theoretical challenge would be to understand the mechanism, since
the long nucleon mean free path eliminates the conventional two-body
mechanism that is present in ordinary fluids.
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